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Introduction

In the realm of operational research, the pursuit of enhancing efficiency and cost-effectiveness is

a challenge that finds its roots in real-world applications. This report delves into a critical

operational challenge faced by a local restaurant in Waterloo, aiming to optimize its delivery

logistics through the application of the Capacitated Vehicle Routing Problem (CVRP) principles.

The significance of this endeavor lies not only in its academic appeal but also in its potential to

drive tangible improvements in operational efficiency and cost reduction for the business.

The focal point of this project is the optimization of delivery logistics for a local restaurant that

extends its services across diverse locations within Waterloo and Kitchener. The cruciality of this

challenge lies in the management of the delivery fleet to ensure timely and cost-effective

deliveries. Each delivery vehicle is constrained by a limited capacity, necessitating strategic

planning to meet the demands of all customers without surpassing these predefined limits. The

complexity lies in the variability of customer locations and demands, making it imperative to

develop an optimized routing plan that minimizes the total travel distance and time, while

concurrently ensuring efficient service to every customer.

This presents an interesting graph-esque problem with its roots in linear programming. However,

the optimization of delivery logistics is not merely an academic exercise; it has profound

real-world implications. A successful application of CVRP principles in this context holds the

promise of streamlining delivery operations, reducing costs, and ultimately enhancing customer

satisfaction. As the restaurant navigates through the intricate web of urban locations and varying

demands, the optimized routing plan becomes a strategic tool for operational success.



The following report will dive into four main sections: defining the challenge to Restaurant as a

business, gathering and cleaning the data, framing the problem as a CVRP problem, and finally a

dive into the results of analyzing and formulation as an optimization problem that maximizes

routes and drivers for maximum efficiency. The ultimate goal is to offer practical insights that

can be implemented to revolutionize the restaurant's delivery service, exemplifying the transition

between academic theory and real-world applicability.

Challenge to Restaurant

This report will first address the challenge of a local food concept restaurant for students,

families, young professionals and anyone who desires convenient, home-style fresh comfort food

(Local Restaurant, n.d.). The restaurant operates a delivery service encompassing various

locations within Waterloo and Kitchener. The primary challenge lies in managing the delivery

fleet to ensure timely and cost-effective deliveries. Each delivery vehicle has a limited capacity,

necessitating careful planning to meet all customer demands without exceeding these limits.

Inefficient routing not only results in increased operational costs, driven by higher fuel

consumption and extended delivery times but also risks compromising the quality of customer

service. In a competitive market where customer satisfaction is important, delays or inaccuracies

in deliveries can lead to customer dissatisfaction and, subsequently, a potential loss of

consumers. Competitors like Uber Eats and Doordash pose significant threats to a restaurant

deciding to operate deliveries in-house. Moreover, the delivery fleet's mismanagement may strain

the restaurant's overall resource allocation, affecting its ability to balance operational costs with

revenue generation. Therefore, addressing the intricacies of the restaurant is not merely an



exercise in improving efficiency; it is a strategic imperative for sustaining and enhancing the

business's competitiveness, customer loyalty, and bottom line.

The Dataset

For this report, the dataset has been extracted with the aid of an inside source, as one of the

collaborators of this report is an existing employee of the restaurant. The dataset comprises

32,978 entries, each representing a delivery job, and is structured into 47 fields and it spans from

January 1, 2022, to January 1, 2023. The one-year time frame provides a comprehensive view of

the delivery operations for the entire year, allowing for a thorough analysis of seasonal

variations, peak periods, and overall delivery efficiency.  For the sake of maintaining

confidentiality and avoiding privacy concerns, the first step in cleaning this dataset involved

masking personal information of delivery orders such as names of customers, as well as

removing information of the drivers themselves. The full dataset variables/columns of the dataset

are listed in Exhibit 1.

Data Cleaning

After careful analysis of the dataset, it was found that some columns have mixed types or null

values, indicating variability in data entry or optional fields, as well as 47 variables presented

complexity in the amount of data to track. Therefore, the dataset was cleaned to remove

irrelevant columns such as “Order Recipient Email” or “Order Status,” given the problem to

solve was based around driver routes and times. A full list of variables/columns after cleaning

can be found in Exhibit 2. With the remaining 28 columns, the data cleaning focused on a

one-one correspondence procedure.



Given the driver information and unique ids, we identified the repetitive nature of some orders,

as one driver was capable of multiple orders and hence the need for optimizing the drivers’

routes. Therefore, a new column “Assigned Driver Name” as well as the “Job Assigned Driver

UUID” columns became the main trackers for each driver. The first step in cleaning any dataset

is to remove missing values, and this step was crucial in order to resolve issues with establishing

a one-to-one correspondence. We initially checked for a one-to-one correspondence between

'Assigned Driver Name' and 'Job Assigned Driver UUID'. After removing the problematic entries

(associated with 'PP'), a one-to-one correspondence was established (See Exhibit 3). We then

created a unique identifier for each driver by concatenating 'Assigned Driver Name', 'Job

Assigned Driver User UUID', and 'Job Assigned Driver UUID'. This identifier was converted

into a numeric code, prefixed with 'Driver_', to form the 'Drivers Unique ID' and hence removing

the name and UUID columns for better consolidation of the data. Throughout this process, the

goal was to ensure that each driver had a unique and identifiable code in the dataset while

maintaining the integrity and correspondence of the data. Our final dataset resulted in a “Drivers

Unique ID” column, for which we verified one-to-one correspondence.

Data Manipulation and Analysis

Given the constraints of our software capabilities as well as the extensive routes that could be

formed from our 32,978 entries, we proceeded with subsampling, a method that reduces data size

by selecting a subset of the original data. Our subsampling focused on finding the number of

deliveries in a given week to use the best sample possible, and thus the following steps were

taken:



1. Convert the 'Job Promised Delivery At' column to the DateTime format to facilitate

date-based operations.

2. Extract the week number and day of the week from the delivery date.

3. Group the data by the week number and day of the week, and count the number of

deliveries for each day.

4. For the first week in the dataset, identify the day with the maximum, minimum, and mean

number of deliveries.

Results of the analysis for each week with the minimum, maximum, and average were calculated

and an example snippet for Week 1 can be found in Exhibit 4.

With the subsampling done, the focus was to calculate distance as within the columns, one of the

most significant variables is time it took for an order to be delivered which would aid in our

understanding of route optimization. Within our data, we grouped “Week Number”, “Day of

Week”' and “Job Group UUID” to calculate total kilometers traveled for each round of

deliveries. It should be noted here that the distance used was the Crowfly Distance in km, as that

was the distance provided in our dataset. After analysis of these distances, we compiled the total

kilometers for each round of delivered orders. Given that an order route would consist of going

to the delivery address and returning back to the restaurant (if there is only 1 address in the

route), the code accounts for doubling the distance and sorting the data such that a Round

number is assigned to reflect the number of rounds taken to and fro the delivery locations. For

further cleaning, the final file accounts for missing and duplicate values within the relevant

columns.



Geocoding

After the lengthy analysis was conducted and the final, cleaned dataset was obtained, we

returned to address the original issue the restaurant faces: optimization of routes. For this focus

on the routes, it was increasingly important to code and augment the dataset given the

geographical coordinates of delivery addresses. With Google Maps API and Python, our team

was able to manipulate the latitudes and longitudes of each delivery address such that each

address input could be manipulated into columns of coordinates for the sake of mapping the

routes using numerical values, with an update reflecting the geomapping of the delivery

addresses.

Our biggest hurdle with handling this data was the complexity and size of the dataset, leading to

a final decision to subsample 20 entries to work with and demonstrate optimizing route abilities.

This restriction is further discussed in our Errors and Risks section of the report.

Formation of the CVRP

With the final set of 20 entries filtered to January 8, 2022 and reflecting valid geographic

information and non-empty values for crucial variable columns, our report will proceed to

describe the formulation of the CVRP. Given that each vehicle can carry up to 6 orders and the

restaurant has a fleet of 5 vehicles, we establish the starting point to be the restaurant location at

130 Columbia St W, Waterloo, ON (43.479584307828894, -80.53734239887197). The primary

goals are to minimize the total distance traveled and ensure that each vehicle's capacity is not

exceeded.



The essential terms to the CVRP are defined in Exhibit 5. Mathematically, CVRP can be

modeled using graph theory, where the depot and customers are nodes in a graph, and the routes

are edges. The objective is to find the shortest paths that connect these nodes, considering the

capacity constraints. This directly correlates to the linear programming models we have explored

in CO 370 this semester, and thus we have utilized the aid of Google OR-Tools to solve the

CVRP problem presented here. At its core, CVRP is solved using combinatorial optimization

techniques. The solver (like the one in Google OR-Tools) typically uses heuristics to efficiently

explore the possible routes and find an optimal or near-optimal solution. In summary, solving

VRP involves a blend of graph theory, combinatorial optimization, and practical application of

geographic and routing data. The use of tools like OR-Tools and visualization libraries bridges

the gap between theoretical optimization and practical application, providing tangible solutions

for complex logistical challenges.

Our code addresses the Vehicle Routing problem and presents an issue/threat to the supply chain

management of the restaurant. The VRP involves determining the most efficient routes for a fleet

of vehicles to deliver goods to a set of locations. Using all of this information, we formulate an

optimization problem, with details below:

Objective Function: Minimize the total distance traveled by all vehicles in the fleet.

Variables:

● A decision variable to represent if the vehicle i travels to address j.

● A variable to represent the load of vehicle i after visiting address j.

Constraints:

● Each vehicle must start and end at the restaurant.



● Each address must be visited exactly once, by exactly one vehicle.

● Total load (orders carried) of each vehicle must not exceed capacity.

The mathematical representation of this formulation can be found in Exhibit 6.

Results

With our dataset and OR tools, we are able to produce a “shortest possible route” for each

vehicle in the fleet given constraints such as not returning to the restaurant until all deliveries are

complete, as well as optimizing the routes within the Waterloo region it serves. See below for a

graphical representation of the solution found, as well as a geographic representation that can be

found in Exhibit 7. The results for each car from the code can also be found in Exhibit 8.



Errors and Risks

It is important to note that this entire formulation is dependent on the dataset we cleaned and

formulated, which was obtained from the restaurant itself. Given that we are not working directly

with the restaurant while formulating this report, there is a large possibility of reporting error, as

we cannot validate all of the data points. Another error to be mindful of lies in our manipulation

of data: while removing missing or NA values is a common practice while cleaning data, we

have no way to track any patterns or reasoning for the missing value and thus removing those

entries may have skewed our dataset. Lastly, we faced issues in our computational power and

commercial licensing access to be able to manipulate the entire dataset, and thus our

subsampling of 20 entries could pose an issue as we are unable to analyze all the data and find

optimized routes for larger sets of data.

In terms of risks to the company, while optimization of fleets and routes is going to solve crucial

supply chain and logistics issues, it would be equally significant to understand whether this route

optimization validates the number of deliveries and cars in their arsenal: for example, if the route

optimization we have presented reflects larger delays in orders delivered or a restriction on

number of deliveries made, restaurant may use this information to expand their delivery fleet or

consider completely outsourcing deliveries with Uber Eats/Doordash as these services already

pose a competitive threat.

Overall, operations research is important to companies like the restaurant looking to optimize

their logistics and our analysis and determinations of the CVRP problem here present a real-life



solution that is applicable far beyond the classrooms of CO 370, and into the business

considerations of many companies across the world.



Exhibits

Exhibit 1: List of All Variables/Columns

1. Store UUID (object): A unique identifier for the store.
2. Store Name (object): Name of the store.
3. Store Partners External ID (float64): External ID associated with store partners.
4. Order UUID (object): Unique identifier for the order.
5. Order Status (object): Status of the order (e.g., completed, cancelled).
6. Order Partners Unique Internal Order ID (object): A unique internal ID for the order,

specific to partners.
7. Order Recipient Name (object): Name of the person receiving the order. Order
8. Recipient Email (object): Email of the order recipient.
9. Order Recipient Phone Number (object): Phone number of the order recipient.
10. Order Recipient First Line Address (object): First line of the address for the order

delivery.
11. Order Recipient City (object): City of the order recipient.
12. Order Recipient State (object): State of the order recipient.
13. Order Recipient Postal Code (object): Postal code of the order recipient.
14. Order Recipient Country (object): Country of the order recipient.
15. Delivery Instructions (object): Instructions for delivery.
16. Order Total (float64): Total amount of the order.
17. Subtotal (float64): Subtotal amount of the order.
18. Tip Amount (float64): Tip amount for the order.
19. Delivery Fee (float64): Fee for delivering the order.
20. Tax (float64): Tax amount for the order.
21. Created At (object): Creation date and time of the order.
22. Requested For (object): Requested date and time for the order.
23. Completed At (object): Completion date and time of the order.
24. Cancelled At (object): Cancellation date and time of the order, if applicable.
25. Job UUID (object): Unique identifier for the job.
26. Job Status (object): Status of the job.
27. Job Partners External ID (float64): External ID associated with job partners.
28. Job Type (object): Type of the job.
29. Job Created At (object): Creation date and time of the job.
30. Job Requested For (object): Requested date and time for the job.
31. Job Completed At (object): Completion date and time of the job.
32. Job Cancelled At (object): Cancellation date and time of the job, if applicable.
33. Collector UUID (object): Unique identifier for the collector.
34. Collector Name (object): Name of the collector.
35. Collector External ID (float64): External ID for the collector.



36. Vehicle UUID (object): Unique identifier for the vehicle.
37. Vehicle Type (object): Type of the vehicle used.
38. Job Group UUID (object): Unique identifier for the job group.
39. Dropoff Sequence Number (float64): Sequence number for the dropoff.
40. Special Instructions (object): Any special instructions for the job.
41. Crowfly Distance (KM) (float64): Distance in kilometers (as the crow flies) for the

delivery.
42. Crowfly Distance (MI) (float64): Distance in miles (as the crow flies) for the delivery.
43. Bearing (float64): Bearing for the delivery.
44. Odometer At Collection (float64): Odometer reading at the time of order collection.
45. Odometer At Delivery (float64): Odometer reading at the time of order delivery.
46. Odometer Upon Return To Store (float64): Odometer reading upon return to the store.
47.Fleetshare (object): Indicates if the delivery was part of a fleetshare system.

Exhibit 2: List of Variables After Data Cleaning

1. Order UUID
2. Order Status
3. Order Recipient Name
4. Order Recipient Phone Number
5. Order Recipient First Line Address
6. Order Recipient Zipcode
7. Order Recipient City
8. Order Description
9. Order Placed At Time
10. Job Created At
11. Job UUID
12. Job Promised Delivery At
13. Job Picked Up At
14. Job Delivered At
15. Job Status
16. Job Delivery Status
17. Job Assigned Driver First Name
18. Job Assigned Driver Last Name
19. Job Assigned Driver User UUID
20. Job Assigned Driver UUID
21. Geoverified
22. Job Group UUID
23. Dropoff Sequence
24. Number Crowfly Distance (KM)



25. Bearing
26. Odometer At Collection
27. Odometer At Delivery
28. Odometer Upon Return To Store

Exhibit 3: One-One Correspondence Code

Exhibit 4: Week 1 Max/Min/Avg Deliveries

Exhibit 5: CVRP Essential Terms
1. Depot: The starting and ending point for all routes.
2. Customers: Locations where deliveries need to be made.
3. Vehicles: A fleet with a fixed number of vehicles.
4. Capacity Constraint: Each vehicle has a maximum capacity (number of deliveries it can

carry).
5. Route Optimization: Minimizing the total distance traveled by all vehicles.

Exhibit 6: CVRP Formulation

Decision Variables:



1. : Binary variable, equal to 1 if vehicle i travels directly from location j to location k,𝑥
𝑖𝑗𝑘

and 0 otherwise.
2. : Continuous variable representing the load of vehicle i after visiting location j.𝐿𝑜𝑎𝑑

𝑖𝑗

Objective Function: min
𝑖=1

𝑛

∑
𝑗=1

𝑚

∑
𝑘≠𝑗,𝑘=1

𝑚

∑ 𝑥
𝑖𝑗𝑘

× 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑗𝑘

1. n is the number of vehicles
2. m is the number of addresses to deliver to
3. is the distance between address j and address k𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑗𝑘

Constraints:

1. Visit each location exactly once:
𝑖=1

𝑛

∑
𝑘≠𝑗,𝑘=1

𝑚

∑ 𝑥
𝑖𝑗𝑘

= 1 ∀𝑗 ≠ 𝐷𝑒𝑝𝑜𝑡

a. Depot = starting point = Local Restaurant

2. Start and end at Depot:
𝑗=1, 𝑗≠𝐷𝑒𝑝𝑜𝑡

𝑚

∑ 𝑥
𝑖,𝐷𝑒𝑝𝑜𝑡,𝑗

= 1 ∀𝑖,  
𝑘=1, 𝑘≠𝐷𝑒𝑝𝑜𝑡

𝑚

∑ 𝑥
𝑖,𝑘,𝐷𝑒𝑝𝑜𝑡

= 1 ∀𝑖,  

3. Load of each vehicle should not exceed capacity: 𝐿𝑜𝑎𝑑
𝑖𝑗

≤  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑖
 ∀𝑖, 𝑗

4. Load changes after each delivery:
𝐿𝑜𝑎𝑑

𝑖𝑘
 =  𝐿𝑜𝑎𝑑

𝑖𝑗
 +  𝑂𝑟𝑑𝑒𝑟

𝑘
× 𝑥

𝑖𝑗𝑘
 ∀𝑖, 𝑗, 𝑘,  𝐿𝑜𝑎𝑑

𝑖,𝐷𝑒𝑝𝑜𝑡
= 0 ∀𝑖 

5. The optimized route should not have any subtours/pass through the depot:
 𝐿𝑜𝑎𝑑

𝑖𝑗
 +  𝑂𝑟𝑑𝑒𝑟

𝑘
× 𝑥

𝑖𝑗𝑘
−  𝐿𝑜𝑎𝑑

𝑖𝑘
 ≤ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑖
 ×  (1 − 𝑥

𝑖𝑗𝑘
) ∀𝑖, 𝑗, 𝑘 ≠ 𝐷𝑒𝑝𝑜𝑡,  

𝐿𝑜𝑎𝑑
𝑖𝑗

≥ 𝑂𝑟𝑑𝑒𝑟
𝑗
 ∀𝑖, 𝑗 ≠ 𝐷𝑒𝑝𝑜𝑡 

𝐿𝑜𝑎𝑑
𝑖,𝐷𝑒𝑝𝑜𝑡

 =  0 ∀𝑖
 

Exhibit 7: Geographic Representation of Shortest Route



Exhibit 8: Code Results
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